Friday, October 19, 2007

SEARCH ENGINES

When we don't know something......What do we do?
We search in the internet using some search engine.
But how does the the search engine search for you?
What is the hidden mechanism behind the searching?
How Internet search engines work?
Here is the answer........

Looking at the Web
Searches Per Day:Top 5 Engines
Google - 250 million
Overture - 167 million
Inktomi - 80 million
LookSmart - 45 million
FindWhat - 33 million

*Feb. 2007.

When most people talk about Internet search engines, they really mean World Wide Web search engines. Before the Web became the most visible part of the Internet, there were already search engines in place to help people find information on the Net.
Programs with names like "gopher" and "Archie" kept indexes of files stored on servers connected to the Internet, and dramatically reduced the amount of time required to find programs and documents. In the late 1980s, getting serious value from the Internet meant knowing how to use gopher, Archie, Veronica and the rest.

Today, most Internet users limit their searches to the Web, so we'll limit this article to search engines that focus on the contents of Web pages.

An Itsy-Bitsy BeginningBefore a search engine can tell you where a file or document is, it must be found. To find information on the hundreds of millions of Web pages that exist, a search engine employs special software robots, called spiders, to build lists of the words found on Web sites. When a spider is building its lists, the process is called Web crawling. (There are some disadvantages to calling part of the Internet the World Wide Web -- a large set of arachnid-centric names for tools is one of them.) In order to build and maintain a useful list of words, a search engine's spiders have to look at a lot of pages.

How does any spider start its travels over the Web? The usual starting points are lists of heavily used servers and very popular pages. The spider will begin with a popular site, indexing the words on its pages and following every link found within the site. In this way, the spidering system quickly begins to travel, spreading out across the most widely used portions of the Web.
"Spiders" take a Web page's content and create key search words that enable online users to find pages they're looking for.

WEB SPIDER CHART


Google.com began as an academic search engine. In the paper that describes how the system was built, Sergey Brin and Lawrence Page give an example of how quickly their spiders can work. They built their initial system to use multiple spiders, usually three at one time. Each spider could keep about 300 connections to Web pages open at a time. At its peak performance, using four spiders, their system could crawl over 100 pages per second, generating around 600 kilobytes of data each second.

Keeping everything running quickly meant building a system to feed necessary information to the spiders. The early Google system had a server dedicated to providing URLs to the spiders. Rather than depending on an Internet service provider for the domain name server (DNS) that translates a server's name into an address, Google had its own DNS, in order to keep delays to a minimum.

When the Google spider looked at an HTML page, it took note of two things:

The words within the page
Where the words were found
Words occurring in the title, subtitles, meta tags and other positions of relative importance were noted for special consideration during a subsequent user search. The Google spider was built to index every significant word on a page, leaving out the articles "a," "an" and "the." Other spiders take different approaches.

These different approaches usually attempt to make the spider operate faster, allow users to search more efficiently, or both. For example, some spiders will keep track of the words in the title, sub-headings and links, along with the 100 most frequently used words on the page and each word in the first 20 lines of text. Lycos is said to use this approach to spidering the Web.
Other systems, such as AltaVista, go in the other direction, indexing every single word on a page, including "a," "an," "the" and other "insignificant" words. The push to completeness in this approach is matched by other systems in the attention given to the unseen portion of the Web page, the meta tags.

Meta TagsMeta tags allow the owner of a page to specify key words and concepts under which the page will be indexed. This can be helpful, especially in cases in which the words on the page might have double or triple meanings -- the meta tags can guide the search engine in choosing which of the several possible meanings for these words is correct. There is, however, a danger in over-reliance on meta tags, because a careless or unscrupulous page owner might add meta tags that fit very popular topics but have nothing to do with the actual contents of the page. To protect against this, spiders will correlate meta tags with page content, rejecting the meta tags that don't match the words on the page.

All of this assumes that the owner of a page actually wants it to be included in the results of a search engine's activities. Many times, the page's owner doesn't want it showing up on a major search engine, or doesn't want the activity of a spider accessing the page. Consider, for example, a game that builds new, active pages each time sections of the page are displayed or new links are followed. If a Web spider accesses one of these pages, and begins following all of the links for new pages, the game could mistake the activity for a high-speed human player and spin out of control. To avoid situations like this, the robot exclusion protocol was developed. This protocol, implemented in the meta-tag section at the beginning of a Web page, tells a spider to leave the page alone -- to neither index the words on the page nor try to follow its links.

0 comments: